

Past Papers Standard Grade Chemistry **Marking Scheme**

2011	K	U	PS		
Credit	/30	%	/30	%	
1	21+	70%	22+	73%	
2	16+	53%	13+	43%	
See general	<16	<53%	<13	< 43%	

20	011 Stand	ard Gro	ade	Che	mistry	Cre	edit N	Nark	king	Schei	ne
Question	Answer	Chemistry Covered									
1	С		solve	solute the substance that is dissolved solvent the liquid that does the dissolving olution A mixture formed when a solute dissolves in a solvent soluble substance which does not dissolve in water/solvent							11
2a	E		Fraction A		Fraction B	Fraction B Fra phtha/Gasoline Ke		raction C Fraction D Kerosene Gas Oil rcraft Fuel Diesel		Fraction E Residue Tar/Bitumen	
2Ь	A	OseCamping CasePropertyFractionViscosityLowEvaporationEasilyFlammabilityHighBoiling PointLow			on A Fraction B Fraction C Fraction D F						Fraction E High Slowly Low High
За	A	Element Density (g cm ⁻³) Electron		Охуден 0.0014 2,6			2005 Phosphorus 1.82 2,8,5	0.0	orine)017 2,7	Lithium 0.53 2,1	Aluminium 2.70 2,8,3
Зb	A+D Both for 1 mark	Arrangement Ion Formed Ion Electron Arrangement		2,0 O ²⁻ 2,8	K ⁺ 2,8,8		2,8,5 P ³⁻ 2,8,8		-,,/ F ⁻ 2,8	2,1 Li ⁺ 2	Al ³⁺ 2,8
Зс	C+D Both for 1 mark	Ammonia NH3 phosphorus fluoride H H F F pyramidal shape pyramidal shape									
4a	F	Substance State at 0°0		A iquid	B Solid		C Solid	C So		E Liquid	F Gas
4b	A+F Both for 1 mark	Bonding Type	C0\	valent lecular	metallic	covalant		ent ionic metallic		covalent molecular	
5α	B+F Both for 1 mark	Oxide Elements in Compound Bonding	Zn metal n	nO O 10n-metal Nic	NO2 N O both non-metals covalent	K metal	K ₂ O O non-metal	CuC Cu metal non ioni	0 -metal	Fe ₂ O ₃ Fe O metal non-meta	CO CO both non-metals covalent
5b	С	Oxide ZnO NO2 K2O CuO Fe2O3 CO Type metal oxide non-metal oxide metal oxide metal oxide non-metal oxide Effect of Image: Signal oxide Image							ide non-metal oxide		
5с	E	Iron is made by reducing iron oxide to iron in a blast furnace									
6a	D	All neutra	lisatio	n reac	tions have l	l⁺ io	ns react	ing to	form	H₂O	
6b	В	The electrons produced in the oxidation reaction are used up in the reaction:Oxidation Reactions in RustingReduction Reaction in RustingFe \rightarrow Fe ²⁺ + 2e ⁻ Fe ²⁺ \rightarrow Fe ³⁺ + e ⁻ $2H_2O$ + O_2 + $4e^- \rightarrow 4OH$						Rusting			
7	C+E Both for 1 mark			Particl Protor Neutro Electro	n in nu n in nu	ation cleus cleus nucl	5	narge +1 0 -1	1	Mass amu amu rox zero	

		A zinc is below calcium in electrochemical series are cannot displace calcium							
		B zinc is not reactive enough to react with cold water							
8	1 mark each	${\cal C}$ To make zinc from zinc oxide, zinc oxide is heated with carbon							
		D zinc reacts with dilute hydrochloric acid (MAZIT metals react with dilute acid)							
		E magnesium is higher than zinc in ECS and Mg displaces zinc from solution.							
		A ions flow through solution, electrons flow through wires							
	×	B Silver Ag ⁺ ions travel to the negative electrode (object electrode)							
9	A,D 💌	C Galvanising is coating iron in zinc							
	1 mark each	D Ag(s) atoms turn into $Ag^{+}(aq)$ ions which dissolve in the solution							
		Ag ⁺ + e [−] is a oxidation reaction (e [−] after the arrow)							
		A Rusting: Fe \rightarrow Fe ²⁺ + 2e ⁻ followed by Fe ²⁺ \rightarrow Fe ³⁺ + e ⁻							
		-							
10		B Rusting: the loss of electrons from Fe atoms to form Fe^{3*} ions							
10	1 mark each	C Iron is protected by attaching to negative terminal (Cathodic Protection)							
		D Tin is lower than iron in ECS so tin cannot sacrificially protect iron							
		E Layer on outside prevents rusting by preventing air/water getting to metal underneath							
Question	Answer	Chemistry Covered							
11a	Distillation	Distillation separated chemicals with different boiling points							
116.00	izatanaz	Tastanaa Same atomic number but different mass number							
11b(i)	isotopes	Isotopes Same number of protons but different number of neutrons							
	8 10	Number of Protons = atomic number (lower number)							
11b(ii)	8 8	Number of Neutrons = mass number - atomic number							
	0 0	(top number) (lower number)							
12a	Fermentation	glucose <u>yeast</u> alcohol + carbon dioxide							
120	reimentation	$C_6H_{12}O_6 \longrightarrow 2C_2H_5OH + 2CO_2$							
	Increase in								
12b(i)	percentage alcohol,	Problem Solving: Formation of conclusion from data in table							
	decrease in density								
		Percentage 20% 30% 40% 50% 60% 70% 80% Density - - 0.928 0.907 0.886 0.865 0.844							
12b(ii)	20	Density - 0.928 0.907 0.886 0.865 0.844 Difference (0.021) (0.021) 0.021 0.021 0.021 0.021							
		Prediction 0.970 0.949							
		СНСНСН							
		poly(vinyIdichloride) — $C - C - C - C - C - C - C - C - C - C $							
13a	СIН								
150		↓							
	$\dot{c} = \dot{c}$								
	С Н	vinyldichloride $C = C + C = C + C = C$							
	carbon monoxide or	Toxic Gas Carbon monoxide Hydrogen chloride Hydrogen cyanide							
13b	carbon monoxide or hydrogen chloride	Plastic burned All plastics (DV(C)) Superglue or							
	nya ogen enior de	(PVC) Polyurethane							
	1.* 1	Solution Acidic Neutral Alkaline							
14a	higher	H* concentration H* greater than OH* H* equal to OH* H* less than OH* OH* concentration OH* less than H* OH* equal to H* OH* greater than H*							
		Concentration Offices man the Officequarity of greater man H							

14b	Line graph showing:	 ¹/₂ mark - both labels with units ¹/₂ mark - both scales ¹/₂ mark - points plotted correctly 						
		$\frac{1}{2}$ mark - points joined up appropriatelyCarbohydratefructoseglucosemaltosesucrosestarch						
15a	$C_{12}H_{22}O_{11}$,	-	glucose		sucrose	starch	
15b	Maltose	Formula C6H12O6 C6H12O6 C12H22O11 C12H22O1 Type monosaccharide monosaccharide disaccharide disaccharide					polysaccharide	
15c(i)	biological catalyst	Enzymes are biological catalyst that catalyse the reactions inside living organisms						
15c(ii)	рН	Enzymes have a temperature (usually 37°C) and a pH at which they work best at. Enzymes are denatured by high temperatures and large changes in pH.						
16a	н н–с–с=с–н н н н		Propene C H H C C C H H H	3H6 C—H H He solution Doo	Cycloprop H H-C H-C H t does not contain	ane C3H6 C-H H s bromine solutio	'n	
16b(i)	Lowers temperature reaction takes place at	Catalysts speed up Catalysts		actions but are r temperature at	-		place at	
16b(ii)	Al ₂ O ₃		Valency below ent's symbol O 2	Put in Cross-over Al 3		low arrows and a necessary to ge	et formula	
17a	Hydrolysis	Hydrolysis: splitting a molecule into smaller molecules with water added into the molecule.						
17ь	51g	$\begin{array}{rcl} 1 & \text{molecule.} \\ 1 & $						
18a	d.c.	d.c. is direct current and has a flow of electrons is a steady direction. a.c. is alternating current with the direction of electron flow changing.						
18b	chlorine	 Negative ions are attracted to the positive electrode: Non-metals form negative ions ∴ chloride ions move to positive electrode Reduction reactions take place at positive electrode: 2Cl⁻ → Cl₂ + 2e⁻ 						
18c	Co ²⁺ or 2+	Chlorine is a non-metal in group 7, with a valency of 1 and forms the Cl^- ion. CoCl ₂ has two Cl ⁻ ions \therefore Cobalt ion must be 2+ to balance charge \therefore Co ²⁺ ion						
19a	Arrow from unreacted gases to catalyst	It is much more economical to recycle unused reactants back into the process than to throw them away and replace them with new chemicals.						
19b(i)	platinum	NH ₃	+ C	2 <u>Pt</u> catal	yst N	10 ₂ + F	1 ₂ 0	

19b(ii)	Reaction is	Ostwald Process is exothermic and gives out heat. Once reaction starts, the heat given
	exothermic	off during the reaction is enough to heat the reactions from that point onwards.
19c	To remove	Catalytic converters contain transition metals which catalyse the break
	harmful gases	down of harmful gases to harmless gases: Initrogen oxides → nitrogen [carbon monoxide → carbon dioxide] unburnt hydrocarbons → carbon dioxide + water
20a(i)	Pb(NO ₃) ₂ + 2NaI ↓	$Pb(NO_3)_2 + 2NaI \longrightarrow PbI_2 + 2NaNO_3$
20a(ii)	PbI2 + 2NaNO3 Filtration	Insoluble solids can be removed from liquids by filtration
20Ь	copper carbonate	metal carbonate + acid
20c(i)	Indicator	Indicator is added to change colour at the point of neutralisation
20c(ii)	0.002	no. of moles = volume x concentration = 0.02litres x 0.1 mol l ⁻¹ = 0.002 mol
20d	0.001	H ₂ SO ₄ + 2KOH → K ₂ SO ₄ + 2H ₂ O 1mol 2mol 0.001mol 0.002mol
21a	from B to A through the wires	$\begin{array}{c c} \hline Electrons flow from B to A \\ \hline \\$
21b	Au⁺ + 2e⁻ → Au	Au ⁺ ions must pick up electrons from electrode B to form Au atoms
21c	Ion bridge	Ion bridge completes the circuit by balancing the movement of charge through the wires e.g. ions bridge can be filter paper soaked in ionic solution
22a	Family of compounds with similar chemical properties	Homologous series are families of compounds with similar chemical properties and gradually changing physical properties.
22b	diagram showing:	Н Н Н Н H-C-S-C-C-H
22c	Addition	H H H H H H H $H-C-C-S-H H H H H$ $H-C-C-S-C-C-H$ $H H H H H$ $H H H$ $H H H$ $H H H$ $H H$ $H H$ $H H$ $H H$ $H H$

